Solar Novus Home

Solar Novus Blog


Hanwha test

Hanwha Q CELLS confirmed that its leading range of solar modules have delivered exceptional performance in a recent test conducted by Fraunhofer Center for Silicon Photovoltaics (CSP) to benchmark light and elevated temperature induced degradation (LeTID) in solar cells.

Hanwha Q CELLS’ modules were tested by Germany’s Fraunhofer CSP and found to display negligible power loss during high-temperature testing conditions of up to 75°C. Both Hanwha Q CELLS’ half-cell monocrystalline Q.PEAK DUO modules and multicrystalline Q.PLUS modules exhibited market-leading anti-LeTID performances among the nine module types tested (comprising seven mono-Si and two multicrystalline silicon modules), including modules produced by various leading solar brands. The final test batch included two modules from each category, resulting in 18 different measurements.

The results of this test were presented at the EU PVSEC conference in September titled: Benchmarking Light and Elevated Temperature Induced Degradation (LETID).

Degradation effect

The effects of light induced degradation (LID) on PERC (passivated emitter rear cells) solar technology are well-known in the PV industry, and are tested for during standard IEC certification of solar cells. However, LeTID – which is a degradation effect identified on both monocrystalline silicon (Cz-Si) and multicrystalline silicon (mc-Si) cells at temperatures above 50°C – can account for cell degradation of up to 10%, but is less understood across the industry.

Hanwha Q CELLS was the first solar cell developer in the industry to link the degradation of PERC cells to high temperatures and was thus the first company to devise a solution to suppress LeTID in 2015, using its Q.ANTUM cell technology that suppresses LID as well as LeTID. While the exact root cause of LeTID is still a topic of much debate among photovoltaic researchers, Hanwha Q CELLS’ Yield Security pledge guarantees that the Company’s mono and multi Q.ANTUM products are certified anti-LeTID – a claim that few other manufacturers can make.

Demonstrating reliability and durability

By controlling for both LID and LeTID, Hanwha Q CELLS can guarantee a reliable module power for the lifetime of its modules. The Fraunhofer CSP results further demonstrate the reliability and durability that the company’s Q.PEAK DUO (Cz-Si) and Q.PLUS (mc-Si) solar modules deliver, with both module types exhibiting <1% power loss during Fraunhofer CSP’s stringent testing procedure. 

As showcased in the graph from Fraunhofer CSP, Hanwha Q CELLS’ monocrystalline (Cz-Si) and multicrystalline (mc-Si) solar modules performed favorably when exposed to accelerated LeTID test conditions (CID – current-induced degradation at 75°C and operation in maximum power point (MPP) mode) compared to other solar module brands tested.

Fraunhofer CSP’s LeTID paper was presented at the 35th EU PVSEC Conference and Exhibition held in Brussels, Belgium, between September 24 -28 this year. This graph above is an updated chart that highlights the results for Hanwha Q CELLS’ modules.

Labels: Hanwha Q-Cells,half cell,monocrystalline,Q.PEAK DUO,silicon photovoltaics,solar module,multicrystalline,Q.PLUS,anti-LeTID,Fraunhofer CSP

Back Back to News

Innovative Solar Products

Copyright © 2019 Novus Media Today Group, LLC. All rights reserved. Website design and build by MM Design.